Moorgate
Primary Academy

Calculations Policy: A Parent's Guide

Numicon

At Moorgate Primary Academy, Numicon is used as a teaching resource throughout the school, along with number tracks and lines, beads and base 10 materials. Numicon is a quality first teaching approach designed to give children the understanding of number ideas and number relationships that is essential for success in maths. It uses a series of structured patterns - Numicon shapes - to represent numbers, as part of a progressive teaching programme.

Mental Methods of Calculation

At Moorgate Primary Academy, we believe that oral and mental mathematics is essential, particularly so in calculation. Early practical, oral and mental work lays the foundations by providing children with a good understanding of how the four operations build on efficient counting strategies and a secure knowledge of place value and number facts. The ability to calculate mentally forms the basis of all methods of calculation and has to be maintained and refined. A good knowledge of numbers or a 'feel' for numbers is the product of structured practice and repetition. It requires an understanding of number patterns and relationships developed through directed enquiry, use of models and images (in particular Numicon) and the application of acquired number knowledge and skills. Secure mental calculation requires the ability to:

- understand
$>$ the different structures of all four operations e.g. to understand subtraction as take away, decrease, difference and the inverse;
$>$ the relationship between operations - that subtraction 'undoes' addition, how multiplication and division relate to one another
> how the rules and laws of arithmetic are used and applied - for example, to add or subtract mentally combinations of one-digit and two-digit numbers (Year 3), and to calculate mentally with whole numbers and decimals (Year 6).
- recall key number facts instantly - for example, all addition and subtraction facts for each number to at least 10 (Year 1), sums and differences of multiples of 10 (Year 2)
- recall all times tables up to 12×12 by then end of year 4. Learnt as follows:
$>$ Foundation - by end of year begin counting sequences
$>$ Year 1 - counting sequences (which lays down the foundation for later times tables e.g. counting in multiples of 2 will lead into learning the 2 times table. By the end of year 1, children can begin to use their knowledge of counting in
multiples of 2,5 and 10 to solve simple practical problems involving multiplication and division.
> Year 2 - Refine 2, 10, 5 times tables. Learn 3 and 4 times tables.
> Year 3 - Refine 2, 10, 5, 3, 4 times tables. Learn 11, 6 and 7 times tables.
> Year 4- Refine 2, 10, 5, 3, 4, 11, 6, 7 times tables. Learn 8, 9, 12 times tables.
$>$ Year 5/6 - continue practice of all times tables up to 12×12, use these to inform division and to work out other times tables higher than 12 (e.g. double 12 times tables to generated 24 times tables).
- use taught strategies to work out the calculation - for example, recognise that addition can be done in any order and use this to add mentally a one digit number or a multiple of 10 to a one-digit or two-digit number (Year 1), partition two-digit numbers in different ways including into multiples of ten and one and add the tens and ones separately and then recombine (Year 2), when applying mental methods in special cases (Year 5).

Addition

Moorgate Primary Academy Addition Calculation: Year 2			
Mental Calculation	- Add numbers using concrete objects, pictorial representations, and mentally, including: $>$ a two-digit number and ones $>$ a two-digit number and tens $>$ two two-digit numbers > adding three one-digit numbers - Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100		
Written Calculation	- Show that addition of two numbers can be done in any order (commutative). - Re-partition numbers - Use a hundred square - Check calculations using the inverse by adding numbers in a different order. - Begin to record addition in columns to begin to support place value and prepare for formal written methods with larger numbers.		
Possible Concrete and Visual Representations		Teacher Modelling/Children's Recordings	
$0000000000-000000000-000000000-000000000 v$ Use Numicon, number grids, place value apparatus/Dienes, place value grids, place value cards, Encourage children to partition numbers rather than counting in ones			evelop and secure their ing of place value cord number sentences
Fluency	- Show increasing fluency in deriving pairs of numbers up to 10 and then up to 20 - Use knowledge to derive and use number facts up to 100 - Add numbers mentally including $\mathrm{TU}+\mathrm{U}, \mathrm{TU}+$ tens, $\mathrm{TU}+\mathrm{TU}, \mathrm{U}+\mathrm{U}+\mathrm{U}$		

Moorgate Primary Academy Addition Calculation: Year 4			
Mental Calculation	- Practice mental methods with increasingly large numbers. - Consolidate partitioning and re-partitioning - Use compensating for adding too much/little and adjusting Common mental calculation strategies: Partitioning and recombining Doubles and near doubles Use number pairs to 10 and 100 I know that $63+29$ Adding near multiples of ten and adjusting is the same as $63+$ Using patterns of similar calculations Using known number facts 30-1 Bridging though ten, hundred Complementary addition		
Written Calculation	- Add numbers with up to 4 digits using the formal written methods of columnar addition where appropriate - Include decimal addition for money.		
Revert to expanded methods if the children find formal columnar method difficult.			
Possible Concrete and Visual Representations		Teacher M	g/Children's Recording
Children apply, develop and secure their understanding of columnar addition which has been taught in year 3. (see table above). The aim is for the children to be using the compact column method of recording by the end of year 4.			
Fluency	- Perform mental calculations with increasingly large numbers to aid fluency - Find 1000 more than a number - Count in $6 \mathrm{~s}, 7 \mathrm{~s}, 9 \mathrm{~s}, 25$ s and 100 s		

Subtraction

Moorgate Primary Academy Subtraction Calculation: Year 4		
Mental Calculation	- Continue to practise mental methods with increasingly large numbers to aid fluency - Methods to support fluent calculation and encourage efficiency of method: $>$ Find a small difference by counting up e.g. 5003-4996 $>$ Subtract nearest multiple of ten and adjust. $>$ Partition larger numbers	
	Whenever possible, children should be encouraged to visualise number lines and other basic, supporting representations to promote fluent work without jottings.	
Written Calculation	- Subtract numbers columnar subtract - Build on formal, ex necessary. - Continue to use re understanding of p	4 digits using the formal written methods of appropriate. thod (See Year 3) using exchange wherever ns and manipulatives to develop
Possible Concrete and Visual Representations		Teacher Modelling/Children's Recordings
The children build upon their learning in year 3 by continuing to practice columnar subtraction with increasingly larger numbers. (see year 3 subtraction methods)		
Fluency	- Count back in 6, 7, 9, 25 and 1000 - Count back through zero to include negative numbers - Find 1000 less than a number - Continue to practise mental calculations with increasingly large numbers to aid fluency	

Multiplication

Moorgate Primary Academy Multiplication Calculation: Year 1	
Mental Calculation	- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. - Count in multiples of twos, fives and tens with equipment, songs \& rhythms, and including by rote. - Doubles up to 10. - Recognising odd and even numbers. - Write as a number pattern (e.g. 5, 10, 15...; 2, 4, 6...; 10, 20, 30...)
Written Calculation	Although there is no statutory requirement for written multiplication in Year 1, it may be helpful to encourage children to begin to write it as a repeated addition sentence in preparation for Year 2 E.g. $2+2+2+2=8$
Possible Concre	and Visual Representations \quad Teacher Modelling/Children's Recordings
Practical only e.g. link to small world Using concrete objects, pictorial representations and arrays with the support of an adult - take photographs/draw pictures - if using Numicon small icons could be stuck in	
	four lots of two is eight two lots of four is eight
	track with cuisenaire
flexible arrav	
Fluency	- Count in twos, fives and tens from different multiples - e.g. 6, 8, 10, 12 etc. - Emphasise number patterns - Double number and quantities

Moorgate Primary Academy Multiplication Calculation: Year 2		
Mental Calculation	- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, connecting the 2,5 and 10 multiplication tables to each other. - Connect the 10 multiplication table to place value. - Recognise odd and even numbers. - Show that multiplication of two numbers can be done in any order (commutative). - Use a variety of language to describe multiplication and division. - Apply doubling of numbers up to ten to doubling larger numbers.	
Written Calculation	- Calculate mathematical statements for multiplication and division within the multiplication tables and - Write them using the multiplication (\times), division (\div) and equals $(=)$ signs - Begin to use other multiplication tables and recall facts to perform written calculations - Use a range of materials and contexts ... including arrays and repeated addition	
Possible Concrete and Visual Representations		Teacher Modelling/Children's Recordings
$2+2+2$ two add two add tw rarnarnern procrer Dancuncuncur 	$2+2+2+2=4 \times 2$ two add two add two add two add two	Record practical work as number sentences $\begin{aligned} & 7 \times 2=\square \\ & 7 \times \square=14 \\ & \square \times 2=14 \\ & \triangle \times \square=14 \end{aligned}$
Fluency	- Count in - e.g. 6,8 - Emphas	os, threes, fives from zero and tens from any number , 12 etc. number patterns

Moorgate Primary Academy Multiplication Calculation: Year 4	
Mental Calculation	- Recall multiplication and division facts for multiplication tables up to $12 \times$ 12 - Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers - Recognise and use factor pairs and commutativity in mental calculations - Practise mental methods and extend this to three?digit numbers to derive facts, (for example $600 \div 3=200$ can be derived from $2 \times 3=6$)
Written Calculation	- Multiply two-digit and three-digit numbers by a one-digit number - using formal written layout - Estimate before calculating - Ensure written methods build on/relate to mental methods (e.g. grid method) - Introduce alongside grid and expanded column methods
	Key skills to support: * know or quickly recall multiplication facts up to 12×12 * understand the effect of multiplying numbers by 10,100 or 1000 * multiply multiples of 10 , for example, 20×40; * approximate, e.g. recognise that 72×38 is approximately $70 \times 40=2800$ and use this information to check whether their answer appears sensible
Possible Concrete and Visual Representations ${ }^{\text {a }}$ Teacher Modelling/Children's Recordings	
The children build upon their learning in year 3 by continuing to practice columnar multiplication with increasingly larger numbers. (see year 3 multiplication methods)	
Fluency	- Count in multiples of $6,7,9,25$ and 1000 - Recall and use multiplication facts up to 12×12 with increasing fluency - Derive multiplication facts with up to three-digits - Recognise and use factor pairs and commutativity in mental calculations - Use the distributive law - Combine knowledge of number facts and rules of arithmetic to solve mental and written calculations e.g. $2 \times 6 \times 5=10 \times 6$

Moorgate Primary Academy Multiplication Calculation: Year 6		
Mental Calculation	- Perform mental calculations, including with mixed operations and large numbers (increasingly large numbers \& more complex calculations) - Use all the multiplication tables to calculate mathematical statements in order to maintain fluency. - Use estimation to check answers to calculations \& determine, in the context of a problem, an appropriate degree of accuracy. - Identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by $\mathbf{1 0}, \mathbf{1 0 0}$ and $\mathbf{1 0 0 0}$ giving answers up to three decimal places	
	Use mental strategies to solve problems e.g. * x4 by doubling and doubling again * $x 5$ by x10 and halving * x20 by x10 and doubling * x9 by multiplying by 10 and adjusting * x6 by multiplying by 3 and doubling	
Written Calculation	- Multiply multi-dig using the formal multiplication) - Multiply one-digit numbers	s up to 4 digits by a two-digit whole number thod of long multiplication (short \& long with up to two decimal places by whole
Possible Concrete and Visual Representations		Teacher Modelling/Children's Recordings
Children apply, consolidate and secure their understanding of columnar multiplication within the context of new mathematical concepts taught within year 6. (see year 5 table for guidance)		
Fluency	- Undertake mental calculations with increasingly large numbers - Continue to use all multiplication tables to calculate mathematical statements in order to maintain fluency	

Division

Moorgate Primary Academy Division Calculation: Year 1		
Mental Calculation	- Solve one-step problems involving multiplication and division, by calculating the answer using concrete - objects, pictorial representations and arrays with the support of the teacher. - (Pupils) make connections between arrays, number patterns, and counting in twos, fives and tens.	
Written Calculation	- Use a range - manipulatives understanding can we share - manipulatives recording; a multiplication - Dominoes and	ete and pictorial representations, including: port children's own recording; and ring and the link with multiplication-"How s between 2 people?" al-life objects to support children's own rstanding of grouping and the link with o reinforce concepts of doubling and halving
Possible Concrete and Visual Representations		Teacher Modelling/Children's Recordings
counting in groups of twos aw bundles \square $: 8$ \square \square -		Using concrete objects, pictorial representations and arrays with the support of an adult - take photographs/draw pictures - if using Numicon small icons could be stuck in How many 2's can we fit on the 6 shape?
Fluency	- Count in twos, fives and tens from different multiples e.g. 6, 8, 10, 12 etc. - Emphasise patterns - Find simple fractions e.g. half and quarter, of objects, numbers and quantities	

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Moorgate Primary Academy Division Calculation: Year 2} \\
\hline Mental Calculation \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers \\
* Calculate mathematical statements for multiplication and division within \\
* the multiplication tables and write them using the multiplication (x), division (\(\div\)) and equals (\(=\)) signs .
\end{tabular}} \\
\hline Written Calculation \& \begin{tabular}{l}
- Show that mult (commutative) \\
- Solve problems arrays, repeat division facts,
\end{tabular} \& ation of two numbers can be done in any order division of one number by another cannot lving multiplication and division, using materials, ddition, mental methods, and multiplication and ding problems in contexts. \\
\hline \multicolumn{3}{|l|}{Possible Concrete and Visual Representations \(\quad\) Teacher Modelling/Children's Recordings} \\
\hline \multicolumn{2}{|l|}{See possible representations used in Year 1} \& \begin{tabular}{l}
Record as number sentences using \(\div\) and \(=\)
\[
8 \div 4
\] \\
Eight divided into four equal groups = two in each group

$$
\div 4=2
$$

Eight can be divided into four equal groups of two or two equal groups of four
\end{tabular}

\hline Fluency \& | - Count back in tw |
| :--- |
| - e.g. 12, 10, 8, 6 |
| - Emphasise patte |
| - Connect ten tim clock face |
| - Introduction to facts for 2,5 and |
| - Solve division pr | \& | hrees, fives from zero and tens from any number |
| :--- |
| ble to place value and five times table to divisions on a plication tables. Practise to become fluent in division ms involving grouping and sharing |

\hline
\end{tabular}

Moorgate Primary Academy Division Calculation: Year 3		
Mental Calculation	* Pupils should be taught to recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. * Pupils continue to practise their mental recall of multiplication tables in order to improve fluency. * Pupils develop efficient mental methods, for example, using commutatively and associativity (e.g., $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=$ 240) and multiplication and division facts to derive related facts.	
Written Calculation	Pupils should be taught to: - write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods. - solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects. * New written methods can be modelled alongside mental or informal methods to ensure understanding.	
Possible Concrete and Visual Representations		Teacher Modelling/Children's Recordings
		Short division of TU $\div \mathrm{U}$ For $81 \div 3$, the dividend of 81 is split into 60 , the highest multiple of 3 that is also a multiple 10 and less than 81 , to give $60+21$. Each number is then divided by 3 . $\begin{array}{ll} 81 \div 3 \\ 60 & \\ 21 & (3 \times 20) \\ \text { ans }=27 & \end{array}$
Fluency	- Recall and use r practise other ta - Write and calcu known - Use division fact out $60 \div 3=20$	d division facts for the 3,4 and $8 x$ tables (Continue to mathematical statements for division using what is derive related division facts e.g. using $6 \div 3=2$ to work

Moorgate Primary Academy Division Calculation: Year 4		
Mental Calculation I know that $6 \div 3=2$, so $600 \div 3=2$.	Pupils should be taught to: - Recall multiplication and division facts for multiplication tables up to $12 \times$ 12 - Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers - Recognise and use factor pairs and commutatively in mental calculations. * Pupils practise mental methods and extend this to three-digit numbers to derive facts	
Written Calculation	Pupils should be taught to: - multiply two-digit and three-digit numbers by a one-digit number using formal written layout - solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as \mathbf{n} objects are connected to m objects.	
Possible Concrete and Visual Representations		Teacher Modelling/Children's Recordings
$\div 2$		Progressing the method from year 3... The short division method is recorded like this: $\begin{array}{r} 20+7 \\ 3 \longdiv { 6 0 + 2 1 } \end{array}$ This is then shortened to: $3 \longdiv { 2 7 }$
	1 1 1 1 1 1 1 1 1	
121 divided by		
Fluency	- Continue to practise recalling division facts for multiplication tables up to 12 x 12 - Practise mental methods and extend this to three-digit numbers for example $200 \times 3=600$ into $600 \div 3=200$ - Use place value, known and derived facts to divide mentally, including dividing by 1 Recognise and use factor pairs and commutatively in mental calculations	

Moorgate Primary Academy Division Calculation: Year 5		
Mental Calculation	Pupils should be taught to: - multiply and divide whole numbers and those involving decimals by 10, 100 and 1000 - multiply and divide numbers mentally drawing upon known facts - identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. Pupils apply all the multiplication tables and related division facts frequently and use them confidently.	
Written Calculation	- Pupils practise and extend their use of the formal written methods of short multiplication and short division. - Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.	
Possible Concrete and Visual Representations		Teacher Modelling/Children's Recordings
Cuisenaire to represent scaling	flexible arrays $4.8 \div 4$ models - Count backwards in 000 - Count backwards with - Practise mental calc - Apply all multiplicat	To find $196 \div 6$, start by multiplying 6 by $10,20,30, \ldots$ to find that $6 \times 30=180$ and $6 \times 40=240$. The multiples of 180 and 240 trap the number 196. This tells us that the answer to $196 \div 6$ is between 30 and 40 . Start the division by first subtracting 180, leaving 16, and then subtracting the largest possible multiple of 6 , which is 12 , leaving 4. $\begin{array}{rc} 6 \longdiv { 1 9 6 } & \\ -\frac{180}{16} & 6 \times 30 \\ -\frac{12}{4} & 6 \times \frac{2}{32} \\ \text { Answer: } & 32 \text { R } 4 \end{array}$ The quotient 32 (with a remainder of 4) lies between 30 and 40 , as predicted.

	them to memory and use them to confidently to make larger calculations	
Moorgate Primary Academy Division Calculation: Year 6		
Mental Calculation	Pupils should be taught - Perform mental numbers. - Use their knowle involving the fou - Identify common - Solve problems use estimation context of a prob Spider diagrams	ions, including with mixed operations and large he order of operations to carry out calculations tions. , common multiples and prime numbers. addition, subtraction, multiplication and division answers to calculations and determine, in the appropriate degree of accuracy.
Written Calculation	- Divide numbers u formal written m whole number re for the context - Divide numbers up written method of remainders accor	digits by a two-digit whole number using the f long division, and interpret remainders as rs, fractions, or by rounding, as appropriate digits by a two-digit number using the formal division where appropriate, interpreting the context.
Possible Concrete and Visual Representations \quad Teacher Modelling/Children's Recordings		
See possible re	esentations used in year 5 $2.72 \div 40=$? $\div 4=£ 340.68$ 1/2 again.] $10=£ 34.068$ nds to $£ 34.07$.	Children consolidate the long division in year 5, progressing to a more refined approach. $\begin{array}{r} 2 4 \longdiv { 5 6 0 } \\ -\frac{480}{80} \\ -\frac{72}{8} \end{array}$ Answer: 23 R 8
Fluency	- Practise division for short and long divis - Continue to use al fluency - Perform mental ca numbers	numbers, using the formal written methods of lication tables and division facts to maintain ons, including with mixed operations and larger

